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The present article is a direct continuation of the first part of this series. We reduce
a proof of the Fukui conjecture (concerning the additivity problem of the zero-point
vibrational energies of hydrocarbons) to that of a proposition related to the theory of
algebraic curves, so that we can focus on the key mechanism of the additivity phenom-
ena. Namely, by establishing what is called the Basic Piecewise Monotone Theorem
(BPMT), we reduce a proof of the Fukui conjecture to that of a proposition, called the
Local Analyticity Proposition, Version 1 (LAP1), which admits a proof via resolution
of singularities. By LAP1, the essential part of the mechanism of the “asymptotic line-
arity phenomena” is extracted and is elucidated by using tools from the mathematical
theory of algebraic curves, whose language is of vital importance in analyzing the crux
of the additivity mechanism.
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1. Introduction

This article is the second part of a series devoted to extending the foun-
dation of the Asymptotic Linearity Theorems (ALTs), which prove the Fukui
conjecture concerning the additivity problem of the zero-point vibrational ener-
gies of hydrocarbons. The conjecture continues to be of vital significance in
the recent development of the theory of generalized repeat space Xr (q, d). (The
reader is referred to [1] and references therein.)

In part I [1] of this series of articles, in conjunction with the repeat space
theory (RST) (cf. [2–8] and references therein), we established the following
sequence of logical implications.

PML (Piecewise Monotone Lemma) ⇒ G Boundedness Theorem ⇒ Spe-
cial Functional ALT ⇒ Functional ALT ⇒ the Fukui conjecture.

In section 2 of the present part II, we formulate a problem in which we
ask if we can reduce a proof of the G Boundedness Theorem to that of prop-
osition 1.1 (Local Analyticity Proposition, Version 1, LAP1) given at the end of
section 2. If the problem can be solved affirmatively, then the essential part of
the mathematical mechanism that causes the “asymptotic linearity phenomena”
is extracted and can be elucidated by using tools from the mathematical theory
of algebraic curves, whose language is of vital importance in analyzing the crux
of the additivity mechanism.

By applying the theory of algebraic curves and by recalling techniques used
in perturbation theory [9], it is seen that this proposition 1.1 is true, admitting
a proof via resolution of singularities. By establishing what is called the Basic
Piecewise Monotone Theorem (BPMT), we solve the above question affirma-
tively (cf. section 4), so we established the following sequence of logical impli-
cations:

LAP1 ⇒ PML2 ⇒ G Boundedness Theorem ⇒ Special Functional ALT
⇒ Functional ALT ⇒ the Fukui conjecture.

Here, PML2 stands for Piecewise Monotone Lemma Version 2, which is an
enhanced version of the PML and is indispensable for a broader range of appli-
cations of the RST. A detailed proof of the LAP1 via resolution of singularities
in conjunction with the RST shall be published in part III of this series.

2. Formulation of the problem of reduction

Before formulating the problem of reduction mentioned in section 1, we
need to recall the definition (Definition 2.1) of symbols from [1] and introduce
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some more (Definition 2.2) for this section and the subsequent sections in the
present article.

Throughout, let Z
+, R denote, respectively, the set of all positive integers

and the set of all real numbers.

Definition 2.1. Let S1 and S2 be nonempty subsets of R. A function f : S1 → S2

is said to be nondecreasing if x1 � x2 implies f (x1) � f (x2) for all x1, x2 ∈ S1. A
function f : S1 → S2 is said to be nonincreasing if x1 � x2 implies f (x2) � f (x1)

for all x1, x2 ∈ S1. A function f : S1 → S2 is said to be monotone if it is either
nondecreasing or nonincreasing.

Let a, b ∈ R with a < b and let I = [a, b]. A function f : I → R is said to
be piecewise monotone if there exists a finite partition

a = x0 < x1 < · · · < xn = b (n ∈ Z
+) (2.1)

of the interval I such that the restriction f |[xi−1, xi ] is monotone for all
i ∈ {1, . . . , n}. In this case, f is said to have an n-partition of monotonicity.

A real-valued function on a subset S ⊂ R is called real analytic on S if it is
the restriction to S of a function which is real analytic on some open set O ⊃ S.

Let a, b ∈ R with a < b and let I = [a, b].
If f : I → R is piecewise monotone, let

Mo(f ) := min {n ∈ Z
+: f has an n-partition of monotonicity}. (2.2)

The Mo(f ) is called the monotonicity number of f .
If f : I → R is not piecewise monotone, let

Mo(f ) = ∞. (2.3)

Cω(I): the ring (UFD) of all real analytic functions defined on I .
Cω(I)[λ]: the polynomial ring (UFD) over Cω(I) in the indeterminate λ.
C(I): the ring of all real-valued continuous functions defined on I .
C(I)[λ]: the polynomial ring over C(I) in the indeterminate λ.
R[λ]: the polynomial ring (UFD) over R in the indeterminate λ.
For each θ ∈ I , let Evθ : C(I)[λ] → R[λ] be the ring homomorphism defined by

Evθ (c0λ
n + c1λ

n−1 + · · · + cn) = c0(θ)λn + c1(θ)λn−1 + · · · + cn(θ). (2.4)

VI (ϕ): the total variation of a real-valued function ϕ on I , i.e.,

VI (ϕ) = sup
�

n∑

i=1

|ϕ(ti) − ϕ(ti−1)|. (2.5)

(�: a = t0 � t1 � · · · � tn = b)
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CBV (I): the normed space of all real-valued continuous functions of bounded
variation on I equipped with the norm given by

‖ϕ‖ = sup{|ϕ(t)|: t ∈ I } + VI (ϕ). (2.6)

Definition 2.2. Let a, b ∈ R with a < b and let I = [a, b].
Map (I × R, R): the ring of all functions f : I × R → R.
Cω∗(I ): the ring defined by Cω∗(I ) := {f ∈ C(I): f is real analytic in the interior
]a, b[ of I }.
Cω∗(I )[λ]: the polynomial ring over Cω∗(I ) in the indeterminate λ.
CPM(I) := {f ∈ C(I): f is piecewise monotone on I }.

Let Fn: C(I)[λ] → Map(I × R, R) be the ring homomorphism defined by

Fn(c0λ
n + c1λ

n−1 + · · · + cn) = f, (2.7)

where f : I × R → R is the function defined by

f (θ, λ) = c0(θ)λn + c1(θ)λn−1 + · · · + cn(θ). (2.8)

If X and Y are nonempty sets and f : X → Y is a mapping, �(f ) denotes the
graph of f :

�(f ) = {(x, f (x)) ∈ X × Y : x ∈ X}. (2.9)

If n is a positive integer, Sn denotes the group of all bijections σ : {1, . . . , n} →
{1, . . . , n}, i.e., the group of permutations of the set of n elements.
If a, b ∈ R with a < b, let Hr(a, b) denote the set of all real-valued real analytic
functions defined on the interval ]a, b[.

At this moment, the reader is referred to [1] for the proof of the following
G Boundedness Theorem. The proof used proposition 3.1 given at the beginning
of section 3 and the PML1 reproduced below. After referring to the proof in [1],
it is easy to see that theorem 2.1 follows directly from the PML2, which is given
after the PML1.

Theorem 2.1 (G Boundedness Theorem, GBT). Let ã, b̃ ∈ R with ã < b̃ and let
Ĩ = [ã, b̃]. Let p ∈ Cω(Ĩ )[λ] be a monic polynomial of degree q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.10)

Suppose that for any θ ∈ Ĩ , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.11)

over the field R has q real roots. Define the mapping f : Ĩ → R[λ] by

f (θ) = Evθ (p), (2.12)
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and let rj (f (θ)) denote the j th root of f (θ) counted with multiplicity, arranged
in the increasing order, where j ∈ {1, . . . , q}. Let a, b ∈ R with a < b and let
I = [a, b]. Suppose that I contains all the roots of f (θ) for all θ ∈ Ĩ . Then, the
following statements are true:

(i) For each ϕ ∈ CBV(I ), the function θ 	→ ∑q

j=1 ϕ(rj (f θ))) defined on Ĩ

is real-valued continuous and of bounded variation, i.e., an element of
CBV(Ĩ ).

(ii) Define the linear operator G: CBV (I ) → CBV (Ĩ ) by

G(ϕ)(θ) =
q∑

j=1

ϕ(rj (f (θ))). (2.13)

Then, G is bounded:

‖G‖ < ∞. (2.14)

Lemma 2.1 (Piecewise Monotone Lemma, Version 1, PML1). Let a, b ∈ R with
a < b and let I = [a, b]. Let p ∈ Cω(I)[λ] be a monic polynomial of degree
q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.15)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.16)

over the field R has q real roots, which we denote by λ1(θ) � λ2(θ) � · · · �
λq(θ). Then, all the λj ’s are piecewise monotone, i.e.,

Mo(λj ) < ∞ (2.17)

for all j ∈ {1, . . . , q}.

Lemma 2.2 (Piecewise Monotone Lemma, Version 2, PML2). Let a, b ∈ R with
a < b and let I = [a, b]. Let p ∈ Cω(I)[λ] be a monic polynomial of degree
q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.18)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.19)

over the field R has q real roots. Consider p as an element of Cω∗(I )[λ], then p

can be factored into first degree monic polynomials:

p = (λ − d1)(λ − d2) · · · (λ − dq), (2.20)
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where

d1, . . . , dq ∈ Cω∗(I )
⋂

CPM(I ). (2.21)

We are ready to formulate our problem of reduction:

Problem S1: It is easy to see that

PML2 ⇒ GBT, (2.22)

hence that

PML2 ⇒ GBT ⇒ ALT ⇒ Fukui conjecture. (2.23)

(We also know that PML2 is useful for extending alpha existence theorem in the
RST.) If PML2 is true, obviously the following Proposition 2.1 (LAP1) is true.
Our problem is:

Is it possible to reduce the proof of the GBT to that of the LAP1?

Proposition 2.1 (Local Analyticity Proposition, Version 1, LAP1). Let a, b ∈ R

with a < b and let I = [a, b]. Let p ∈ Cω(I)[λ] be a monic polynomial of degree
q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (2.24)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (2.25)

over the field R has q real roots.
Define f : I × R → R by

f (θ, λ) = λq + c1(θ)λq−1 + · · · + cq(θ). (2.26)

Then, for any (θ, λ) ∈ f −1(0) ∩ (]a, b[ × R) there exist ε, δ > 0, n ∈ Z
+, and

h1, . . . , hn ∈ Hr(θ − ε, θ + ε) with h1(θ) = · · · = hn(θ) = λ such that

f −1(0) ∩ (]θ − ε, θ + ε[ × ]λ − δ, λ + δ[) =
n⋃

i=1

�(hi). (2.27)
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3. The glueing tools

For the affirmative solution of the problem of reduction formulated in sec-
tion 2, we need the following five tools for “glueing locally defined function frag-
ments” (cf. section 4) to construct functions in Cω∗(I ) appearing in PML2.

Proposition 3.1 (Glueing Tool 1). Let a, b ∈ R with a < b and let I = [a, b]. Let
p ∈ C(I)[λ] be a monic polynomial of degree q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (3.1)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (3.2)

over the field R has q real roots, which we denote by λ1(θ) � λ2(θ) � · · · �
λq(θ). Then, all the λj ’s are continuous, i.e.,

λj ∈ C(I) (3.3)

for all j ∈ {1, . . . , q}.

Proof. This is equivalent to proposition 2.1 in [1].

Proposition 3.2 (Glueing Tool 2). Let I be a nonempty connected subset of R,
let f and g1, . . . , gn: I → R be continuous functions. Suppose that

(I) �(f ) ⊂
n⋃

i=1
�(gi),

(II) �(g1), . . . , �(gn) are pairwise disjoint.

Then, there exists a unique i ∈ {1, . . . , n} such that

�(f ) = �(gi). (3.4)

Proof. For each i ∈ {1, . . . , n}, define subset Ei of I by

Ei = {x ∈ I: f (x) = gi(x)}. (3.5)

We first claim that

(i)
n⋃

i=1
Ei = I ,

(ii) E1, . . . , En are pairwise disjoint,

(iii) Ei is clopen (closed and open) in I for each i ∈ {1, . . . , n}.
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Claim (i) follows from the definition of Ei and hypothesis (I), claim (ii)
follows from hypothesis (II). To see that claim (iii) is true, consider for each
i ∈ {1, . . . , n} the continuous mapping ui : I → R × R defined by

ui(x) = (f (x), gi(x)). (3.6)

Now notice that the diagonal set

� = {(y, y) ∈ R × R: y ∈ R} (3.7)

is closed in R × R and that Ei is expressed as the inverse image of � under ui :

Ei = u−1
i (�). (3.8)

Thus, Ei is closed in I for each i ∈ {1, . . . , n}. By claims (i) and (ii), we imme-
diately notice that Ei is also open in I for each i ∈ {1, . . . , n}.

By the hypothesis of the proposition, I is a nonempty connected subset of
R, thus clopen subset Ei of I is either ∅ or I itself. Hence, by claims (i) and (ii),
there exists a unique i ∈ {1, . . . , n} such that

Ei = I. (3.9)

The conclusion follows.

Proposition 3.3 (Glueing Tool 3). Let I be a nonempty connected subset of R,
let f1, . . . , fm, and g1, . . . , gn: I → R be continuous functions. Suppose that

(I)
m⋃

i=1
�(fi) =

n⋃
i=1

�(gi),

(II) �(f1), . . . , �(fm) are pairwise disjoint,

(III) �(g1), . . . , �(gn) are pairwise disjoint.

Then, we have

(i) m = n,

(ii) There exists σ ∈ Sm such that

(f1, . . . , fm) = (gσ(1)
, . . . , gσ(m)

). (3.10)

Proof. From hypothesis (I), we obtain

�(f1), . . . , �(fm) ⊂
n⋃

i=1

�(gi), (3.11)

thus, by hypothesis (III) and proposition 3.2, we see that there exists a mapping
σ : {1, . . . , m} → {1, . . . , n} such that
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�(fi) = �(gσ(i)
) (3.12)

for all i ∈ {1, . . . , m}. By hypothesis (II), on the other hand, �(gσ(1)
), . . . , �(gσ(m)

)

are pairwise disjoint. This implies that σ(1), . . . , σ (m) are all distinct from each
other and hence that σ is an injection. Thus, m � n.

Similarly, starting from

�(g1), . . . , �(gn) ⊂
m⋃

i=1

�(fi), (3.13)

we get n � m.
Therefore, m = n, and σ is a bijection.

Proposition 3.4 (Glueing Tool 4). Let I be a nonempty connected subset of R,
let f1, . . . , fm, and g1, . . . , gn: I → R be continuous functions. Suppose that

(I)
m⋃

i=1
�(fi) =

n⋃
i=1

�(gi),

(II) �(f1), . . . , �(fm) are pairwise non-identical,

(III) �(g1), . . . , �(gn) are pairwise disjoint.

Then, �(f1), . . . , �(fm) are pairwise disjoint.

Proof. Let i, j ∈ {1, . . . , m} be such that i �= j . Then, (II) implies that

�(fi) �= �(fj ). (3.14)

We have to show that

�(fi) ∩ �(fj ) = Ø. (3.15)

By the obvious relation

�(fi) ⊂
m⋃

i=1

�(fi), (3.16)

and by (I), we have

�(fi) ⊂
n⋃

i=1

�(gi). (3.17)

So, by applying proposition 3.2, we see that there exists a unique k ∈ {1, . . . , n}
such that

�(fi) = �(gk). (3.18)
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Similarly, we see that there exists a unique l ∈ {1, . . . , n} such that

�(fj ) = �(gl). (3.19)

Now the following two cases are possible:

(i) k = l and �(gk) = �(gl),

(ii) k �= l and �(gk) ∩ �(gl) = Ø.

But, (i) together with (3.18) and (3.19) would imply �(fi) = �(fj ), which con-
tradicts with (3.14). Thus, (ii) must be true, which together with (3.18) and (3.19)
imply (3.15).

Proposition 3.5 (Glueing Tool 5). Let A, B, a, b, s ∈ R be such that A < a < s <

b < B. Let λ1, . . . , λm be real-valued continuous functions defined on ]A, B[. Let
h1, . . . , hn be real analytic functions defined on ]a, b[ such that �(h1), . . . , �(hn)

are pairwise non-identical. For each σ ∈ Sm, define functions λσ
1 , . . . , λσ

m :
]A, B[ → R by

λσ
i (x) =

{
λi(x) if x ∈ ]A, s]
λσ(i)

(x) if x ∈ ]s, B[. (3.20)

Suppose that

(I) �(λ1|]a, s[), . . . , �(λm|]a, s[) are pairwise disjoint,

(II) �(λ1|]s, b[), . . . , �(λm|]s, b[) are pairwise disjoint,

(III) λ1, . . . , λm are all real analytic on the interval ]A, s[,

(IV) λ1, . . . , λm are all real analytic on the interval ]s, B[,

(V)
m⋃

i=1
�(λi |]a, b[) =

n⋃
i=1

�(hi).

Then, there exists a unique σ ∈ Sm such that λσ
1 , . . . , λσ

m are all real analytic on
]A, B[.

Proof. By considering the intersection of ]a, s[ × R and the set given by (V), we
get

m⋃

i=1

�(λi |]a, s[) =
n⋃

i=1

�(hi |]a, s[). (3.21)

Note that �(h1|]a, s[), . . . , �(hn|]a, s[) are pairwise non-identical and that λi |]a, s[
and hi |]a, s[ are all continuous. Thus, using propositions 3.3 and 3.4, we see that

m = n (3.22)
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and that there exists a µ ∈ Sm such that

λi |]a, s[ = hµ(i)
|]a, s[ (3.23)

holds for all i ∈ {1, . . . , m}.
Similarly, by considering the intersection of ]s, b[ × R and the set given by

(V), we see that there exists a ν ∈ Sm such that

λi |]s, b[= hν(i)
|]s, b[ (3.24)

holds for all i ∈ {1, . . . , m}. Set

σ = µ ◦ ν−1. (3.25)

Then, by the group property of Sm, we have

λσ(i)
|]s, b[= hµ(i)

|]s, b[ (3.26)

for all i ∈ {1, . . . , m}.
Now recall the definition of λσ

i , and notice that equalities (3.23) and (3.26)
and the easily verifiable fact that λi(s) = hµ(i)

(s) for all i ∈ {1, . . . , m} imply that

λσ
i |]a, b[= hµ(i)

(3.27)

for all i ∈ {1, . . . , m}. Hence in view of the assumption that h1, . . . , hm are
all real analytic on ]a, b[, λσ

1 , . . . , λσ
m are all real analytic on ]a, b[. On the other

hand, by the definition of λσ
i , (III), and (IV), it is easily seen that λσ

1 , . . . , λσ
m

are all real analytic on ]A, s[ and ]s, B[, and hence that λσ
1 , . . . , λσ

m are all real
analytic on ]A, B[. Thus, we have proved that there exists a σ ∈ Sm such that
λσ

1 , . . . , λσ
m are all real analytic on ]A, B[. The uniqueness of such a σ directly

follows from (II), (III), and (IV).

4. A solution of the problem of reduction via the basic piecewise monotone
theorem and the glueing tools

First, we introduce the key theorem for the solution of our problem, whose
proof will be given at the end of this section.

Theorem 4.1 (Basic Piecewise Monotone Theorem, BPMT). Let a, b ∈ R with
a < b and let I = [a, b]. Let p ∈ Cω(I)[λ] be a monic polynomial of degree
q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (4.1)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (4.2)
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over the field R has q real roots. Let f := Fn(p), i.e., define f : I × R → R by

f (θ, λ) = λq + c1(θ)λq−1 + · · · + cq(θ). (4.3)

Let u, v ∈ R with a � u < v � b and let J = [u, v]. Let l ∈ Cω∗(J ). Suppose
that

f (θ, l(θ)) = 0 (4.4)

for all θ ∈ J . Then, l ∈ CPM(J ).

Second, we introduce the following proposition 4.1 (LAP2), which is seem-
ingly a stronger version of LAP1, but is equivalent to LAP1 as proposition 4.2
indicates.

Proposition 4.1 (Local Analyticity Proposition, Version 2, LAP2). Let a, b ∈ R

with a < b and let I = [a, b]. Let p ∈ Cω(I)[λ] be a monic polynomial of degree
q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (4.5)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (4.6)

over the field R has q real roots.
Define f: I × R → R by

f (θ, λ) = λq + c1(θ)λq−1 + · · · + cq(θ). (4.7)

Then, for any θ ∈ ]a, b[ there exist ε > 0, n ∈ Z
+, and h1, . . . , hn ∈ Hr(θ−ε, θ+ε)

such that

f −1(0) ∩ (]θ − ε, θ + ε[ × R) =
n⋃

i=1

�(hi). (4.8)

Proposition 4.2 The LAP1 implies the LAP2.

Proof. Assume LAP1. Fix an arbitrarily given � ∈ ]a, b[. Let �1 < · · · < �m

be all the roots of the equation Ev�(p) = 0, in other words, let �1 < · · · < �m

be such that

{�1, . . . , �m} = {λ ∈ R : f (�, λ) = 0}. (4.9)

By LAP1 and the continuity of analytic functions, one easily verifies that there
exist ε, δ1, . . . , δm ∈ R

+, N1, . . . , Nm ∈ Z
+, h1

1, . . . , h1
N1

, . . . , hm
1 , . . . , hm

Nm
∈ Hr(� −

ε, � + ε) such that
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h
j

1(�) = · · · = h
j

Nj
(�) = �j (4.10)

for all j ∈ {1, . . . , m}, and such that

Ej := ]� − ε, � + ε[ × ]�j − δj , �j + δj [ (4.11)

Dj := ]� − ε, � + ε[ × ]�j − δj/2, �j + δj/2[ (4.12)

have the following properties:

(i) f −1(0) ∩ Ej =
Nj⋃
i=1

�(h
j

i ) for all j ∈ {1, . . . , m},

(ii) f −1(0) ∩ (Ej − Dj) = Ø for all j ∈ {1, . . . , m}.
Hence, by (i), for the proof of the proposition, it suffices to show that

f −1(0) ∩ (]� − ε, � + ε[ × R
) ⊂ f −1(0) ∩




m⋃

j=1

Ej



 , (4.13)

f −1(0) ∩ (]� − ε, � + ε[ × R
) ⊃ f −1(0) ∩




m⋃

j=1

Ej



 . (4.14)

Since (4.14) is evident by the definition of Ej , we shall subsequently show that
(4.13) is true. For each θ ∈ I , let λs(θ) denote the sth root of the polynomial
Evθ (p). Recall proposition 3.1 (Glueing Tool 1), which asserts that real-valued
function λs : θ 	→ λs(θ) defined on I is continuous for all s ∈ {1, . . . , q}. For
each s ∈ {1, . . . , q}, let γs denote the graph of the restriction of λs to the inter-
val ]� − ε, � + ε[:

γs := �
(
λs |]� − ε, � + ε[

)
. (4.15)

Then, by the definitions of λs and γs ,

f −1(0) ∩ (]� − ε, � + ε[ × R) =
q⋃

s=1

γs, (4.16)

and (4.13) is equivalent to the relation

q⋃

s=1

γs ⊂ f −1(0) ∩



m⋃

j=1

Ej



 . (4.17)

Note that the left-hand side of (4.17) is obviously included in f −1(0), hence it
remains to show that
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q⋃

s=1

γs ⊂
m⋃

j=1

Ej . (4.18)

Given an s ∈ {1, . . . , q}, let t ∈ {1, . . . , m} be such that

(�, λs(�)) ∈ Et, (4.19)

which is obviously true for some t ∈ {1, . . . , m}. We claim that

γs ⊂ Et. (4.20)

Suppose that (4.20) were not true, then there would exist a ξ ∈ ]�−ε, �+ε[
such that (ξ, λs(ξ)) �∈ Et , i.e., such that

λs(ξ) �∈ ]�t − δt , �t + δt [. (4.21)

By the continuity of λs and by the Intermediate Value Theorem, (4.21) implies
that

γs ∩ (Et − Dt) �= Ø. (4.22)

Now from (ii) and the obvious relation γs ⊂ f −1(0), we get

γs ∩ (Et − Dt) = Ø, (4.23)

which contradicts with (4.22). Therefore, our claim (4.20) is true, and this com-
pletes the proof.

Next, we introduce a weaker version of PML2, which is henceforth signified
as PML2ω for short.

Lemma PML2ω. Let a, b ∈ R with a < b and let I = [a, b]. Let p∈ Cω(I)[λ]
be a monic polynomial of degree q ∈ Z

+ given by

p = λq + c1λ
q−1 + · · · + cq. (4.24)

Suppose that for any θ ∈ I , the polynomial

Evθ (p) = λq + c1(θ)λq−1 + · · · + cq(θ) (4.25)

over the field R has q real roots. Consider p as an element of Cω∗(I )[λ], then p

can be factored into first degree monic polynomials:

p = (λ − d1)(λ − d2) · · · (λ − dq), (4.26)

where

d1, . . . , dq ∈ Cω∗(I ). (4.27)
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Proposition 4.3 The LAP2 implies the PML2ω.

Proof. Assume the validity of the LAP2. Under the assumption of the PML2ω,
let D(θ) denote the discriminant of Evθ (p). If D(θ) ≡ 0 on I , a factorization
of p into irreducible factors has multiple non-constant factors. Using this fact,
one easily sees that the proof of the proposition is reduced to the case when
D(θ) �≡ 0 on I , which we henceforth assume. (Note: Suppose that the monic
polynomial p has a factorization: p = p1 . . . pk, where p1, . . . , pk ∈ Cω(I)[λ]
and that c0i is the leading coefficient of polynomial pi for i ∈ {1, . . . , m}. Then,
we have c01 . . . c0k = (c01 . . . c0k)

−1 = c−1
01 . . . c−1

0k = 1. Hence, given a factor-
ization of the monic polynomial p: p = p1 . . . pk, the factorization can be put
into the form: p = (c−1

01 p1) . . . (c−1
0k pk), where each c−1

0i pi is a monic polynomial.
Also notice that for any θ ∈ I , Evθ (p) = Evθ (c

−1
01 p1) . . . Evθ (c

−1
0k pk) and that the

polynomial Evθ (c
−1
0i pi) over the field R has qi real roots for any θ ∈ I , where

qi : = deg(Evθ (c
−1
0i pi)), i ∈ {1, . . . , k}.)

Let K denote the set of zeros of the real-valued function D: θ 	→ D(θ)

defined on I . Since D is real analytic on the compact interval I , we see that K

is a finite set.
For each θ ∈ I , denote the ith root of the polynomial Evθ (p) by λi(θ).

First, recall proposition 3.1 (Glueing Tool 1), which asserts that real-valued func-
tion λi : θ 	→ λi(θ) defined on I is continuous for all i ∈ {1, . . . , q}. Next note
that i �= j implies that

λi(θ) �= λj (θ) (4.28)

for all θ ∈ I − K because D(θ) �= 0 for all θ ∈ I − K.
By the Implicit Function Theorem, we easily demonstrate that all the λi are

real analytic on ]a, b[ − K. (Remark: This fact also follows directly from some
theoretical tools constructed in part III of this series of articles.)

By the fact that all the λi are real analytic on ]a, b[ − K and continuous on
[a, b], and by LAP2 and proposition 3.5 (Glueing Tool 5), one easily verifies the
conclusion of the PML2ω is true if LAP2 is true.

Now we can state:
Solution of our problem of reduction. We know that

LAP1 ⇒ LAP2 ⇒ PML2ω, (4.29)

where the implications have been verified using the glueing tools developed in
section 3.

On the other hand, we easily see that

PML2ω & BPMT ⇒ PML2 ⇒ GBT. (4.30)
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Hence, for the affirmative solution of our problem of reduction, it remains to
prove the BPMT. After preparing the following propositions 4.4 and 4.5, we
demonstrate the BPMT.

Proposition 4.4 Let D be a unique factorization domain. Let p1, p2 be two poly-
nomials given by

p1 = a0x
n + a1x

n−1 + · · · + an ∈ D[x] (a0 �= 0), (4.31)

p2 = b0x
m + b1x

m−1 + · · · + bm ∈ D[x]. (4.32)

Let R(p1, p2) stand for the resultant of the polynomials p1, p2. Then p1

and p2 have a common non-constant factor if and only if

R(p1, p2) = 0. (4.33)

(For the proof of proposition 4.4, see, e.g. Ref. [10].)

Proposition 4.5 Let D be a unique factorization domain of characteristic zero.
Let p be a polynomial given by

p = a0x
n + a1x

n−1 + · · · + an ∈ D[x] (a0 �= 0). (4.34)

Then a factorization of the polynomial p into irreducible factors has multiple
non-constant factors if and only if the discriminant of p vanishes

D(p) = R(p, p′) = 0. (4.35)

(For the proof of proposition 4.5, see, e.g. Ref. [11].)

We are now ready to provide

Proof of theorem 4.1 (BPMT). For the proof of the theorem, we may and do
assume that I = J without loss of generality.

Define w ∈ Cω(I) by

w = R

(
p,

∂p

∂θ

)
, (4.36)

where

∂p

∂θ
:= ∂c1

∂θ
λq−1 + ∂c2

∂θ
λq−2 + · · · + ∂cq

∂θ
∈ Cω(I)[λ]. (4.37)

Let W ∈ Cω(I)[λ] be the 0th degree polynomial defined by

W = wλ0. (4.38)
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That is, we consider w as an element of Cω(I)[λ], denoted W . By the fundamen-
tal property of the resultant, W can be written as

W = Ap + B
∂p

∂θ
, (4.39)

where A and B are some elements in Cω(I)[λ]. Now apply the ring homomor-
phism Fn to the both sides:

Fn(W) = Fn(A)Fn(p) + Fn(B)Fn
(

∂p

∂θ

)
. (4.40)

Set u:= Fn(A), v := Fn(B), and note that f = Fn(p), ∂f

∂θ
= Fn

(
∂p

∂θ

)
, and that

w(θ) = Fn(W)(θ, λ) for all (θ, λ) ∈ I × R. Thus, the equality

w(θ) = u(θ, λ)f (θ, λ) + v(θ, λ)
∂f

∂θ
(θ, λ) (4.41)

holds for all (θ, λ) ∈ ]a, b[ × R. Substituting l(θ) for λ in the right-hand side of
this equality, we then have

w(θ) = u(θ, l(θ))f (θ, l(θ)) + v(θ, l(θ))
∂f

∂θ
(θ, l(θ)) (4.42)

for all θ ∈ ]a, b[. Differentiating the real-analytic function θ 	→ f (θ, l(θ)) defined
on ]a, b[, and recalling (4.4), we have

∂f

∂θ
(θ, l(θ)) + ∂f

∂λ
(θ, l(θ))l′(θ) = 0 (4.43)

for all θ ∈ ]a, b[.
Now notice that (4.4), (4.42), and (4.43) imply

{θ ∈ ]a, b[: l′(θ) = 0} ⊂ {θ ∈ ]a, b[: w(θ) = 0}. (4.44)

Since w ∈ Cω(I), the set of zeroes of w on [a, b] is either a finite set or [a, b]
itself. We consider these two cases separately below:

Case 1: If {θ ∈ [a, b]: w(θ) = 0} is a finite set, then {θ ∈ ]a, b[: l′(θ) = 0} is
evidently a finite set and l ∈ CPM(I ).

Case 2: If {θ ∈ [a, b]: w(θ) = 0} = [a, b], then w = 0 ∈ Cω(I) and the
proposition 4.4 implies that p and ∂p

∂θ
have a common non-constant factor.

Now recalling the fact that p is a monic polynomial, clearly we have

deg
(

∂p

∂θ

)
< deg(p). (4.45)

Given a factorization of

p =
m∏

j=1

pj , (4.46)
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where all the pj are irreducible monic polynomials, the equality

Evθ (p) =
m∏

j=1

Evθ (pj ) (4.47)

holds for each θ ∈ I . Let

qj := deg(pj ). (4.48)

Since R[λ] is a UFD and since Evθ (p) can be factored into q(= deg(p)) monic
linear factors in R[λ] by the hypothesis of the proposition, Evθ (pj ) can be fac-
tored into qj monic linear factors in R[λ].

We claim that there exists a j ∈ {1, . . . , m} such that

Fn(pj )(θ, l(θ)) = 0 (4.49)

for all θ ∈ I . In fact by applying Fn to (4.46), and evaluating at (θ, l(θ)), we
have

Fn(p)(θ, l(θ)) =
m∏

j=1

Fn(pj )(θ, l(θ)) (4.50)

for all θ ∈ I . Let p0 := p, and for each j ∈ {0, . . . , q} define gj ∈ Cω∗(I ) by

gj (θ) = Fn(pj )(θ, l(θ)). (4.51)

Recalling the hypothesis of the proposition, note that

g0(θ) =
m∏

j=1

gj (θ) = 0 (4.52)

for all θ ∈ I , so that we have

I =
m⋃

j=1

g−1
j (0). (4.53)

Pick any compact subinterval I0 of ]a, b[, say, I0 := [a + (b − a)/3, b − (b − a)/3].
Then, equality (4.53) implies that for at least one j ∈ {1, . . . , m}, the set of zeros
of gj |I0 is infinite, hence gj vanishes on the compact interval I0. So, for some
j ∈ {1, . . . , m}, gj , which is real-analytic on ]a, b[, vanishes on ]a, b[ and hence,
by continuity, on the whole domain I = [a, b].

Thus, we may and do henceforth assume that p is irreducible.
But, under this assumption, by inequality (4.45), p and ∂p

∂θ
have a common

non-constant factor, only if

∂p

∂θ
= ∂c1

∂θ
λq−1 + ∂c2

∂θ
λq−2 + · · · + ∂cq

∂θ
= 0 ∈ Cω(I)[λ], (4.54)
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i.e., only if c1, . . . , cq are constant functions. If so, we easily see that there exist
constant functions d1, . . . , dq ∈ Cω(I) such that

p = (λ − d1)(λ − d2) · · · (λ − dq). (4.55)

Note that q must be 1, since p is irreducible by our assumption. We now see
that l equals a constant function d1 and hence l ∈ CPM(I).

We have established the BPMT, and hence the following implications are
true:
LAP1 ⇒ PML2 ⇒ G Boundedness Theorem ⇒ Special Functional ALT ⇒
Functional ALT ⇒ the Fukui conjecture.

By applying the theory of algebraic curves and by recalling techniques used
in perturbation theory [9], it is seen that the LAP1 admits a proof using resolu-
tion of singularities and related methods. In part III of this series, we shall pro-
vide a detailed proof of the LAP1 in conjunction with the repeat space theory
[1–8].
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